

Welcome to Kedro Snowflake plugin documentation!

Contents:

	Introduction
	What are Snowflake / Snowflake Tasks / Snowpark SDK?

	Why to integrate Kedro project with Snowflake?

	Installation
	Prerequisites

	Plugin installation

	Available commands

	Quickstart

	Advanced configuration

	Snowflake datasets

	Data Assets
	API Reference

	Development
	Prerequisites

	Local development

	MLflow support
	High level architecture

	Implementation details

	Configuration example

	Kedro starter

	Deployment to Snowflake and inference

Indices and tables

	Index

	Module Index

	Search Page

Introduction

What are Snowflake / Snowflake Tasks / Snowpark SDK?

Snowflake [https://www.snowflake.com/en/] is a cloud-based data warehousing platform that provides scalable storage and analytics capabilities. It is designed to be highly flexible and allows users to store and process large amounts of data across multiple regions and clouds. Snowflake’s unique architecture separates compute resources from storage, enabling users to scale up and down compute resources as needed without affecting their data.

Snowflake Tasks [https://docs.snowflake.com/en/user-guide/tasks-intro] are a feature within Snowflake that allows users to define and manage complex data processing workflows. A task consists of one or more SQL statements and can be triggered automatically based on a predefined schedule or manually by a user. Tasks can be used to automate data integration and transformation processes, making it easier to maintain and manage complex data pipelines.

The Snowpark Python SDK [https://docs.snowflake.com/en/developer-guide/snowpark/python/index] is a library that allows users to write Python code that interacts with Snowflake. With the Snowpark Python SDK, users can create and manage objects such as tables, views, and stored procedures, as well as execute SQL queries directly from Python. This enables users to leverage the full power of Python to create complex data processing workflows that seamlessly integrate with Snowflake.

Why to integrate Kedro project with Snowflake?

The Kedro Snowflake plugin provides an efficient and scalable way to execute Kedro pipelines directly within Snowflake, leveraging Snowpark Python SDK. By using the plugin, users can seamlessly translate Kedro pipelines into Snowflake tasks and run them without the need for external systems. This makes it an ideal solution for users who need to scale up Kedro Machine Learning pipelines in Snowflake, with direct access to data.

[image: ../_images/kedro-snowflake-tasks-graph.png]Kedro pipeline in Snowflake

Installation guide

Prerequisites

	Python 3.8 is a must ⚠️ - this is enforced by the snowflake-snowpark-python package. Refer to Snowflake documentation [https://docs.snowflake.com/en/developer-guide/snowpark/python/setup] for more details.

	A tool to manage Python virtual environments (e.g. venv, conda, virtualenv). Anaconda is recommended by Snowflake.

	Kedro is fixed for now at version <0.18.9 due to data set errors that appear in later versions.

Plugin installation

Install from PyPI

Install the plugin (it automatically installs Kedro in a supported version)

$ pip install "kedro-snowflake>=0.1.0"

Install from sources

You may want to install the develop branch which has unreleased features:

pip install git+https://github.com/getindata/kedro-snowflake.git@develop

Available commands

You can check available commands by going into project directory and running:

kedro snowflake
kedro snowflake [OPTIONS] COMMAND [ARGS]...

Options:
 -e, --env TEXT Environment to use.
 -h, --help Show this message and exit.

Commands:
 init Creates basic configuration for Kedro Snowflake plugin
 run Runs the pipeline using Snowflake Tasks

Quickstart

Before you start, make sure that you have access to Snowflake account and prepare the following information:

	Snowflake Username

	Snowflake Password

	Snowflake Account Name

	Snowflake Warehouse Name

	Snowflake Database Name

	Snowflake Schema Name

	Snowflake password (you will store it locally in an environment variable)

You will also need:

	Python 3.8 (must-have ⚠️ - this is enforced by the snowflake-snowpark-python package. Refer to Snowflake documentation [https://docs.snowflake.com/en/developer-guide/snowpark/python/setup] for more details.

	A tool to manage Python virtual environments (e.g. venv, conda, virtualenv). Anaconda is recommended by Snowflake.

	Prepare new virtual environment with Python == 3.8.

	Install the plugin

pip install "kedro-snowflake>=0.1.2"

	Create new project from our starter

kedro new --starter=snowflights --checkout=0.1.2

 Project Name
 ============
 Please enter a human readable name for your new project.
 Spaces, hyphens, and underscores are allowed.
 [Snowflights]:

 Snowflake Account
 =================
 Please enter the name of your Snowflake account.
 This is the part of the URL before .snowflakecomputing.com
 []: abc-123

 Snowflake User
 ==============
 Please enter the name of your Snowflake user.
 []: user2137

 Snowflake Warehouse
 ===================
 Please enter the name of your Snowflake warehouse.
 []: compute-wh

 Snowflake Database
 ==================
 Please enter the name of your Snowflake database.
 [DEMO]:

 Snowflake Schema
 ================
 Please enter the name of your Snowflake schema.
 [DEMO]:

 Snowflake Password Environment Variable
 =======================================
 Please enter the name of the environment variable that contains your Snowflake password.
 Alternatively, you can re-configure the plugin later to use Kedro's credentials.yml
 [SNOWFLAKE_PASSWORD]:

 Pipeline Name Used As A Snowflake Task Prefix
 ===

 [default]:

 Enable Mlflow Integration (See Documentation For The Configuration Instructions)
 ==

 [False]:

 The project name 'Snowflights' has been applied to:
 - The project title in /tmp/snowflights/README.md
 - The folder created for your project in /tmp/snowflights
 - The project's python package in /tmp/snowflights/src/snowflights

Pipeline name parameter is here to allow you run many pipelines in the same database in snowflake and avoid conflicts between them. For demo it’s fine to leave it as default.

Leave the mlflow integration disabled for now. More instructions on how to get the integration to work will available later in a blog post.

	The Snowflake Password Environment Variable is the name of the environment variable that contains your Snowflake password. Make sure to set in in your current terminal session. Alternatively, you can re-configure the plugin later to use Kedro’s credentials.yml.
For example (using env var):

export SNOWFLAKE_PASSWORD="super_secret!"

	Go to the project’s directory: cd snowflights

	Install the requirements

pip install -r src/requirements.txt

	Launch Kedro pipeline in Snowflake

kedro snowflake run --wait-for-completion

After launching the command, you will see auto-refreshing CLI interface, showing the progress of the tasks execution.

[image: Kedro Snowflake Pipeline execution]

In Snowpark, you can also see the history of the tasks execution:
[image: Kedro Snowflake Tasks history]

Advanced configuration

This plugin uses *snowflake.yml configuration file in standard Kedro’s config directory to handle all its configuration.
Follow the comments in the example config, to understand the meaning of each field and modify them as you see fit.

snowflake:
 connection:
 # Either credentials name (Reference to a key in credentials.yml as in standard Kedro)
 # or leave
 # credentials: ~
 # and specify rest of the fields
 credentials: snowflake
account: "abc-123"
database: "KEDRO"
 # Name of the environment variable to take the Snowflake password from
password_from_env: "SNOWFLAKE_PASSWORD"
role: ~
schema: "PUBLIC"
user: "user2137"
warehouse: "DEFAULT"
 runtime:
 # Default schedule for Kedro tasks
 schedule: "11520 minute"

 # Optional suffix for all kedro stored procedures
 stored_procedure_name_suffix: ""

 # Names of the stages
 # `stage` is for stored procedures etc.
 # `temporary_stage` is for temporary data serialization
 stage: "@KEDRO_SNOWFLAKE_STAGE"
 temporary_stage: '@KEDRO_SNOWFLAKE_TEMP_DATA_STAGE'

 # List of Python packages and imports to be used by the project
 # We recommend that this list will be add-only, and not modified
 # as it may break the project once deployed to Snowflake.
 # Modify at your own risk!
 dependencies:
 # imports will be taken from local environment and will get uploaded to Snowflake
 imports:
 - kedro
 - kedro_datasets
 - kedro_snowflake
 - omegaconf
 - antlr4
 - dynaconf
 - anyconfig
 # packages use official Snowflake's Conda Channel
 # https://repo.anaconda.com/pkgs/snowflake/
 packages:
 - snowflake-snowpark-python
 - cachetools
 - pluggy
 - PyYAML==6.0
 - jmespath
 - click
 - importlib_resources
 - toml
 - rich
 - pathlib
 - fsspec
 - scikit-learn
 - pandas
 - zstandard
 - more-itertools
 - openpyxl
 - backoff
 # Optionally provide mapping for user-friendly pipeline names
 pipeline_name_mapping:
 __default__: default

Snowflake datasets

This plugin integrates with Kedro’s datasets and provides additional set of datasets for Snowflake.
The catalog.yml in our official Snowflights starter shows example usage of each of them:

companies:
 type: kedro_datasets.snowflake.SnowparkTableDataSet
 table_name: companies
 database: kedro
 schema: PUBLIC
 credentials: snowflake

reviews:
 type: pandas.CSVDataSet
 filepath: data/01_raw/reviews.csv

shuttles:
 type: pandas.ExcelDataSet
 filepath: data/01_raw/shuttles.xlsx
 load_args:
 engine: openpyxl # Use modern Excel engine, it is the default since Kedro 0.18.0

preprocessed_shuttles:
 type: kedro_snowflake.datasets.native.SnowflakeStageFileDataSet
 stage: "@KEDRO_SNOWFLAKE_TEMP_DATA_STAGE"
 filepath: data/02_intermediate/preprocessed_shuttles.csv
 credentials: snowflake
 dataset:
 type: pandas.CSVDataSet

Kedro Snowflake data classes

kedro-snowflake natively supports Kedro’s official SnowparkTableDataSet and adds a few new classes to make it easier to use Snowflake with Kedro.

Both of these can be found under the kedro_snowflake.datasets.native module.

For details on usage, see the API Reference below.

API Reference

	
class kedro_snowflake.datasets.native.SnowflakeStageFileDataSet(stage: str, filepath: str, dataset: str | dict, filepath_arg: str = 'filepath', database: str | None = None, schema: str | None = None, credentials: Dict[str, Any] | None = None)

	Dataset providing an integration with most of the standard Kedro file-based datasets.
It allows to store/load data from Snowflake stage for any underlying dataset, e.g. pandas.CSVDataSet etc.

Args

- stage: Name of the Snowflake stage. Must start with @.

- filepath: Path to the file in the Snowflake stage.

- dataset: a dictionary for configuring the underlying dataset.

It can be either a string with only dataset name (e.g. “pandas.CSVDataSet”)

or a dictionary with the same structure as you would use in the Kedro catalog.yml.

- filepath_arg: Name of the argument in the underlying dataset that accepts the filepath (default is filepath). # noqa

- database: Name of the Snowflake database. If not specified, will attempt to load from the credentials.

- schema: Name of the Snowflake schema. If not specified, will attempt to load from the credentials.

- credentials: Credentials to use to load/save data from Snowflake. Can be used instead of schema/database # noqa
in the same fashion as in the kedro_datasets.snowflake.snowpark_dataset.SnowparkTableDataSet.

Example

Example of a catalog.yml entry:

preprocessed_shuttles:
 type: kedro_snowflake.datasets.native.SnowflakeStageFileDataSet
 stage: "@KEDRO_SNOWFLAKE_TEMP_DATA_STAGE"
 filepath: data/02_intermediate/preprocessed_shuttles.csv
 credentials: snowflake
 dataset:
 type: pandas.CSVDataSet

Development

Prerequisites

	poetry 1.3.2 (as of 2023-04-26)

	Python == 3.8

	Snowflake account (or trial)

Local development

It’s easiest to develop the plugin by having a side project created with Kedro (e.g. our Snowflights starter), managed by Poetry (since there is no pip install -e support in Poetry).
In the side project, just add the following entry in pyproject.toml:

[tool.poetry.dependencies]
kedro-snowflake = { path = "<full path to the plugin on local machine>", develop = true}

and invoke

poetry update
poetry install

and all of the changes made in the plugin will be immediately visible in the side project (just as with pip install -e option).

From that point you can just use

kedro snowflake run --wait-for-completion

to start the pipelines in Snowflake and develop new features/fix bugs.

[Beta] MLflow support

High level architecture

The key challenge is to provide access to the external service endpoints (like MLflow)
that is currently not yet supported natively in Snowpark (External Access feature is on the Snowflake roadmap). Snowflake external
functions are the preferred workaround.
[image: ../_images/mlflow-support.png]MLflow and Kedro-snowflake

Implementation details

Kedro-Snowflake <-> MLflow integration is based on the following concepts:

	Snowflake external functions [https://docs.snowflake.com/en/sql-reference/external-functions-introduction] that
are used for wrapping POST requests to the MLflow instance. In the minimal setup the following wrapping external functions for MLflow REST API calls must be created:

	Create run [https://mlflow.org/docs/latest/rest-api.html#create-run]

	Update run [https://mlflow.org/docs/latest/rest-api.html#update-run]

	Log param [https://mlflow.org/docs/latest/rest-api.html#log-param]

	Log metric [https://mlflow.org/docs/latest/rest-api.html#log-metric]

	Search experiment [https://mlflow.org/docs/latest/rest-api.html#search-experiments]

	Snowflake externa function translators [https://docs.snowflake.com/en/sql-reference/external-functions-translators] for
changing the format of the data sent/received from the MLflow instance.

	Snowflake API integration [https://docs.snowflake.com/en/sql-reference/sql/create-api-integration] for setting up
a communication channel from the Snowflake instance to the cloud HTTPS proxy/gateway service
where your MLflow instance is hosted (e.g. Amazon API Gateway, Google Cloud API Gateway or Azure API Management).

	Snowflake storage integration [https://docs.snowflake.com/en/sql-reference/sql/create-storage-integration] to enable
your Snowflake instance to upload artifacts (e.g. serialized models) to the cloud storage (Amazon S3, Azure Blob Storage, Google Cloud Storage) used by the
MLflow instance.

Configuration example

 mlflow:
 # MLflow experiment name for tracking runs
 experiment_name: demo-mlops
 stage: "@MLFLOW_STAGE"
 # Snowflake external functions needed for calling MLflow instance
 functions:
 experiment_get_by_name: demo.demo.mlflow_experiment_get_by_name
 run_create: demo.demo.mlflow_run_create
 run_update: demo.demo.mlflow_run_update
 run_log_metric: demo.demo.mlflow_run_log_metric
 run_log_parameter: demo.demo.mlflow_run_log_parameter

Kedro starter

The provided Kedro starter (Snowflights) has a builtin MLflow support.
You can enable it during the project setup, i.e.:

 Enable Mlflow Integration (See Documentation For The Configuration Instructions)
 ==

 [False]: True

Deployment to Snowflake and inference

You can find instructions on how to make mlflow-snowflake integration here: https://github.com/Snowflake-Labs/mlflow-snowflake

Deployment

Inference with User Defined Function (UDF)

select
 MLFLOW$SNOWFLIGHTS_MODEL(
 "engines",
 "passenger_capacity",
 "crew",
 "d_check_complete",
 "moon_clearance_complete",
 "iata_approved",
 "company_rating",
 "review_scores_rating"
) AS price
from
 (
 select
 1 as "engines",
 100 as "passenger_capacity",
 5 as "crew",
 true as "d_check_complete",
 true as "moon_clearance_complete",
 true as "iata_approved",
 10.0 as "company_rating",
 5.0 as "review_scores_rating"
 union all
 select
 2,
 20,
 5,
 false,
 false,
 false,
 3.0,
 5.0
);

Index

 S

S

 	
 	SnowflakeStageFileDataSet (class in kedro_snowflake.datasets.native)

 nav.xhtml

 Table of Contents

 		
 Welcome to Kedro Snowflake plugin documentation!

 		
 Introduction

 		
 What are Snowflake / Snowflake Tasks / Snowpark SDK?

 		
 Why to integrate Kedro project with Snowflake?

 		
 Installation

 		
 Prerequisites

 		
 Plugin installation

 		
 Install from PyPI

 		
 Install from sources

 		
 Available commands

 		
 Quickstart

 		
 Advanced configuration

 		
 Snowflake datasets

 		
 Data Assets

 		
 API Reference

 		
 SnowflakeStageFileDataSet

 		
 Development

 		
 Prerequisites

 		
 Local development

 		
 MLflow support

 		
 High level architecture

 		
 Implementation details

 		
 Configuration example

 		
 Kedro starter

 		
 Deployment to Snowflake and inference

 		
 Deployment

 		
 Inference with User Defined Function (UDF)

_images/mlflow-support.png
API

Kedro pipeline ‘ i i
integration «% REST API /
q p Fronted

Snowflake DAG of tasks
ML pipeline API Gateway

translation

= Database]
{ backend

Storage integration Artifacts
store

_images/snowflake_running_pipeline.gif
(kedro-snow-tests-py3.8) (base) + snowflights kedro snowflake run --wait-for-completion

_static/plus.png

_images/kedro-snowflake-tasks-graph.png
© KEDRO /PUBLIC / KEDRO_SNOWFLAKE_START_DEFAULT_TASK

%= Task () ACCOUNTADMIN @ 1 day ago

TaskDetails Graph Run History

+ - o Run Task Graph

KEDRO_SNOWFLAKE_... v

EXPORT_DATA_TO_SNOW...
® PREPROCESS_COMPANIE...

= ® . CREATE_MODEL_INPUT_T...
®
SpLT_DATA NODE L. EVALUATE MODEL NODE

PREPROCESS_SHUTTLES.... - ® ®
®

KEDRO_SNOWFLAKE_STA..
®

TRAIN_MODEL_NODE
~ =

_static/file.png

_images/snowflake_tasks_history.png
Task

Date Range Apr 26, 2023 - Apr 26, 2023

All

tory

I Task Runs ©

= Succeeded (24) © Failed (2)

25

20

15

10

24 Tasks (Apr 26,2023, 12 AM - Apr 27,2023, 12 AM)

Apr 26,12 AM

TASK NAME

EVALUATE_MODEL_NODE

TRAIN_MODEL_NODE

SPLIT_DATA_NODE

CREATE_MODEL_INPUT_TABLE_NODE

PREPROCESS_COMPANIES_NODE

EXPORT_DATA_TO_SNOWFLAKE_NODE

PREPROCESS_SHUTTLES_NODE

KEDRO_SNOWFLAKE_START_DEFAULT_TASK

Task status Succeeded

Database All

5AM

STATUS

10 AM

DURATION

s

m13s

155

155

165

10s

18s

2.0s

Apr 26,2023,1PM
® Succeeded

Total

SCHEDULED TIME

Apr 26, 2023, 1:30:46 PM

Apr 26, 2023, 1:29:28 PM
Apr 26, 2023, 1:29:09 PM
Apr 26, 2023, 1:28:50 PM

Apr 26, 2023, 1:28:33 PM

Apr 26, 2023, 1:28:16 PM
Apr 26, 2023, 1:28:16 PM

Apr 26, 2023, 1:28:06 PM

3pM

DATABASE

KEDRO

KEDRO

KEDRO

KEDRO

KEDRO

KEDRO

KEDRO

KEDRO

SCHEMA

PUBLIC

PUBLIC

PUBLIC

PUBLIC

PUBLIC

PUBLIC

PUBLIC

PUBLIC

- DEFAULT

c

© Data up to 45 minute latency

Apr 26,11 PM

Q search (7

QUERY

_static/minus.png

